NumPy amax()

The amax() function computes maximum value along a specified axis in an array.

Example

import numpy as np

array1 = np.array([5, 2, 8, 1, 9])

# find maximum value in array1 maxValue = np.amax(array1)
print(maxValue) # Output: 9

amax() Syntax

The syntax of amax() is:

numpy.amax(a, axis = None, keepdims = False)

amax() Arguments

The amax() function takes following arguments:

  • a - the input array
  • axis (optional) - the axis along which the maximum value is computed
  • keepdims (optional) - whether to preserve the input array's dimension (bool)

amax() Return Value

The amax() function returns the maximum element from an array or along a specified axis.


Example 1: amax() With 2-D Array

The axis argument defines how we can find the maximum element in a 2-D array.

  • If axis = None, the array is flattened and the maximum value of the flattened array is returned.
  • If axis = 0, the maximum value is calculated column-wise.
  • If axis = 1, the maximum value is calculated row-wise.
import numpy as np

array1 = np.array([[10, 17, 25], 
                              [15, 11, 22]])
                  
# calculate the maximum value of the flattened array result1 = np.amax(array1)
print('The maximum value of the flattened array:', result1)
# calculate the column-wise maximum values result2 = np.amax(array1, axis=0)
print('Column-wise maximum values (axis 0):', result2)
# calculate the row-wise maximum values result3 = np.amax(array1, axis=1)
print('Row-wise maximum values (axis 1):', result3)

Output

The maximum value of the flattened array: 25
Column-wise maximum values (axis 0): [15 17 25]
Row-wise maximum values (axis 1): [25 22]

Here,

  1. np.amax(array1) calculates the maximum value of the flattened array. It returns the largest element in the entire array.
  2. np.amax(array1, axis=0) calculates the column-wise maximum values. It returns an array containing the maximum value for each column.
  3. np.amax(array1, axis=1) calculates the row-wise maximum values. It returns an array containing the maximum value for each row

Example 2: amax() With keepdims

When keepdims = True, the dimensions of the resulting array matches the dimension of the input array.

import numpy as np

array1 = np.array([[10, 17, 25], 
                                [15, 11, 22]])

print('Dimensions of original array:', array1.ndim)

result = np.amax(array1, axis=1)

print('\nWithout keepdims:')
print(result)
print('Dimensions of array:', result.ndim) 

# set keepdims to True to retain the dimension of the input array result = np.amax(array1, axis=1, keepdims=True)
print('\nWith keepdims:') print(result) print('Dimensions of array:', result.ndim)

Output

Dimensions of original array: 2

Without keepdims:
[25 22]
Dimensions of array: 1

With keepdims:
[[25]
 [22]]
Dimensions of array: 2

Without keepdims, the result is simply a one-dimensional array containing the maximum values along the specified axis.

With keepdims, the resulting array has the same number of dimensions as the input array.

Our premium learning platform, created with over a decade of experience and thousands of feedbacks.

Learn and improve your coding skills like never before.

Try Programiz PRO
  • Interactive Courses
  • Certificates
  • AI Help
  • 2000+ Challenges