NumPy det()

The determinant of a matrix is a scalar value that provides information about the properties and behavior of the matrix.

Example

The numpy.linalg.det() function is used to compute the determinant of a square matrix.

import numpy as np

# create a 2x2 matrix
matrix1 = np.array([[2, 4], 
                                  [1, 6]])

# compute the determinant
result = np.linalg.det(matrix1)

print(result)  

# Output: 7.999999999999998

det() Syntax

The syntax of det() is:

numpy.linalg.det(matrix)

det() Arguments

The det() method takes the following arguments:

  • matrix - the input matrix for which we want to compute the determinant

det() Return Value

The det() method returns a floating-point number.


Example 1: Determinant of a 3x3 Matrix

import numpy as np

# create a matrix
matrix1 = np.array([[1, 2, 3], 
             		      [4, 5, 1],
             		      [2, 3, 4]])

# find determinant of matrix1
result = np.linalg.det(matrix1)

print(result)

Output

-5.00

Here, we have used the np.linalg.det(matrix1) function to find the determinant of the square matrix matrix1.


Example 2: Determinant of a Random Matrix

import numpy as np

# create a random 2x2 matrix
matrix1 = np.random.randint(0, 10, (2, 2))  

# find determinant of matrix1
result = np.linalg.det(matrix1)

print("Matrix:\n", matrix1)
print("Determinant: \n", result)

Output

Matrix:
[[5 8]
 [2 7]]
Determinant: 
 18.999999999999996

Here, we have created a random 2x2 matrix using np.random.randint() and then used np.linalg.det() to find the determinant.

This code generates a different output each time we run it.

Your builder path starts here. Builders don't just know how to code, they create solutions that matter.

Escape tutorial hell and ship real projects.

Try Programiz PRO
  • Real-World Projects
  • On-Demand Learning
  • AI Mentor
  • Builder Community