JavaScript Math tan()

The tan() method computes the trigonometric tangent of the specified angle and returns it.

Example

// 1 represents angle in radian
let value = Math.tan(1);
console.log(value); 

// Output: 1.5574077246549023

tan() Syntax

The syntax of the Math.tan() method is:

Math.tan(angle)

Here, tan() is a static method. Hence, we are accessing the method using the class name, Math.


tan() Parameter

The tan() method takes a single parameter:

  • angle - in radians whose tangent value is to be calculated

tan() Return Value

The tan() method returns:

  • tangent of a given angle (in radians)
  • NaN (Not a Number) for a non-numeric argument

Example 1: JavaScript Math.tan()

// tangent of 5 radian let value1 = Math.tan(5);
console.log(value1);
// negative radians are allowed let value2 = Math.tan(-2);
console.log(value2); // Output: // -3.380515006246586 // 2.185039863261519

In the above example,

  • Math.tan(5) - calculates the tangent of 5
  • Math.tan(-2) - calculates the tangent of -2

Example 2: Math.tan() with Math Constants

// math constants can be used let value = Math.tan(Math.PI);
console.log(value); // Output: -1.2246467991473532e-16

In the above example, we have used the tan() method to compute the tangent of the math constant PI.

Here, the output -1.2246467991473532e-16 represents -1.2246467991473532 * 10-16.


Example 3: Math.tan() with Non-Numeric argument

let string = "Luke";

// tan() with a string argument let value = Math.tan(string);
console.log(value); // Output: NaN

In the above example, we have used the tan() method with a string argument.

When using a string argument, the method gives us NaN as output.


Example 4: Math.tan() with Infinity argument

// tan() with infinity let value1 = Math.tan(Infinity);
console.log(value1);
// tan() with negative infinity let value2 = Math.tan(-Infinity);
console.log(value2); // Output: // NaN // NaN

The tan() method doesn't treat -Infinity and Infinity as numbers and produces NaN as output.

This is because the tangent of an angle can never be infinite.


Also Read:

Did you find this article helpful?

Our premium learning platform, created with over a decade of experience and thousands of feedbacks.

Learn and improve your coding skills like never before.

Try Programiz PRO
  • Interactive Courses
  • Certificates
  • AI Help
  • 2000+ Challenges