Learn Python practically
and Get Certified.
Reference Materials
Created with over a decade of experience.
Certification Courses
Created with over a decade of experience and thousands of feedback.
Learn Python practically
and Get Certified.
Try Programiz PRO!
Learn Python practically
and Get Certified.
Pandas Dataframe Methods
Pandas DataFrames are the cornerstone of data manipulation, offering an extensive suite of methods for effective data analysis. It deals with methods like merge() to merge datasets, groupby() to group data for analysis and pivot() to pivot tables for better insights.
NumPy reshape()
Gives a new shape to an array
NumPy where()
where() returns indices of an array that are True
NumPy transpose()
transpose() swaps the axes of the given array
NumPy concatenate()
concatenate() joins arrays elements together
NumPy vstack()
vstack() stacks the input arrays vertically
NumPy append()
append() appends the values at the end of an array
NumPy sort()
sort() method sorts an array in ascending order
NumPy shape()
shape() method returns the shape of an array
NumPy ravel()
ravel() flattens array without changing its data
NumPy repeat()
repeat() repeats the elements of the array
NumPy hstack()
hstack() stacks the arrays horizontally
NumPy stack()
stack() joins a sequence of arrays along new axis
NumPy argmax()
argmax() returns the index of the largest element
NumPy roll()
roll() shifts array elements by specified times
NumPy tile()
tile() constructs an array by repeating arrays
NumPy argsort()
argsort() returns indices that sorts an array
NumPy squeeze()
squeeze() removes the dimensions with size 1
NumPy argmin()
argmin() returns index of smallest array element
NumPy insert()
insert() adds the values at specified indices
NumPy nonzero()
nonzero() finds indices of elements that aren't 0
NumPy argwhere()
returns indices of non-zero elements as 2-D array
NumPy delete()
delete() deletes the values at specified indices
NumPy flip()
flip() reverses the order of the elements
NumPy dstack()
dstack() stacks the sequence of arrays depthwise
NumPy flatten()
flatten() flattens array without changing its data
NumPy astype()
astype() converts an array to a specified datatype
NumPy tolist()
tolist() converts a NumPy array to a Python list
NumPy pad()
pad() adds a value around array axis
NumPy split()
split() splits an array into many sub-arrays
NumPy apply_along_axis()
applies function to axis of nd arrays,avoids loops
NumPy apply_over_axes()
apply a function repeatedly over multiple axes