{}
run-icon
main.py
import random # Define the double streets double_streets = { 1: list(range(1, 7)), # [1, 2, 3, 4, 5, 6] 2: list(range(7, 13)), # [7, 8, 9, 10, 11, 12] 3: list(range(13, 19)), # [13, 14, 15, 16, 17, 18] 4: list(range(19, 25)), # [19, 20, 21, 22, 23, 24] 5: list(range(25, 31)), # [25, 26, 27, 28, 29, 30] 6: list(range(31, 37)), # [31, 32, 33, 34, 35, 36] } # Configuration variables sets_width = 12 # Number of numbers to choose in each set num_rounds = 100000 # Number of rounds (Sets) to simulate threshold_three_or_less = 4 # Threshold for "four or less" threshold_four_or_more = 5 # Threshold for "five or more" # Function to find the double street for a given number, ignoring 0 def find_double_street(num): if num == 0: return None for street_num, street in double_streets.items(): if num in street: return street_num return None # Track the number of double streets results results = [] zero_count = 0 # Function to generate a more random sample def generate_random_sample(): sample = set() while len(sample) < sets_width: sample.add(random.randint(0, 36)) return list(sample) # Simulate the rounds for round_num in range(num_rounds): count_double_streets = 0 selected_numbers = generate_random_sample() # Generate a more random sample zero_count += selected_numbers.count(0) # Count how many times 0 appears hit_streets = set() # Track which double streets were hit hit_street_numbers = [find_double_street(num) for num in selected_numbers] # Store the double street numbers for each hit valid_hits = [num for num in hit_street_numbers if num is not None] # Remove None values for 0 in calculations hit_streets.update(valid_hits) # Add street numbers to the set count_double_streets = len(hit_streets) results.append(count_double_streets) # Calculate statistics, excluding 0 double streets total_rounds = len(results) counts = {i: results.count(i) for i in range(1, 7)} # Count occurrences for 1 to 6 percentages = {i: (counts[i] / total_rounds) * 100 for i in range(1, 7)} # Calculate percentage for 1 to 6 # Calculate the maximum streak for each number of double streets max_streaks = {i: 0 for i in range(1, 7)} current_streaks = {i: 0 for i in range(1, 7)} for result in results: for i in range(1, 7): if result == i: current_streaks[i] += 1 if current_streaks[i] > max_streaks[i] and current_streaks[i] > 1: # Ensure streak is more than 1 max_streaks[i] = current_streaks[i] else: current_streaks[i] = 0 # Calculate the percentage and max streak for threshold_four_or_more and threshold_three_or_less four_or_more = sum(results.count(i) for i in range(threshold_four_or_more, 7)) # Count occurrences for 5, 6 three_or_less = sum(results.count(i) for i in range(1, threshold_three_or_less + 1)) # Count occurrences for 1, 2, 3, 4 percentage_four_or_more = (four_or_more / total_rounds) * 100 percentage_three_or_less = (three_or_less / total_rounds) * 100 # Calculate the total max streak for threshold_four_or_more and threshold_three_or_less max_streak_four_or_more = sum(max_streaks[i] for i in range(threshold_four_or_more, 7)) max_streak_three_or_less = sum(max_streaks[i] for i in range(1, threshold_three_or_less + 1)) # Print the results in a formatted way print(f"\nStatistics of Double Streets with {num_rounds} sets of {sets_width} numbers ({num_rounds * sets_width} Spins):\n") for i in range(1, 7): print(f"{i} DS | {counts[i]:<5} Sets | {percentages[i]:>5.2f}% | Streak: {max_streaks[i]}") print("\nAdditional Percentages") print("----------------------") print(f"Percentage of rounds with {threshold_four_or_more} or more double streets: {percentage_four_or_more:.2f}% | Streak: {max_streak_four_or_more}") print(f"Percentage of rounds with {threshold_three_or_less} or less double streets: {percentage_three_or_less:.2f}% | Streak: {max_streak_three_or_less}")
Output